
Introduction

Data Objects

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

2

Data objects

Scalar data objects:

• Numeric (Integers, Real)

• Booleans

• Characters

• Enumerations

Composite objects:

• String

• Pointer

Structured objects:

• Arrays

• Records

• Lists

• Sets

Abstract data types:

•Classes

Active Objects:

•Tasks

•Processes

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

3

Binding of data objects

A compiler creates two classes of objects:

• Memory locations

• Numeric values

A variable is a binding of a name to a memory location:

• Contents of the location may change

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

4

Data types

Each data object has a type:

Values: for objects of that type

Operations: for objects of that type

Implementation: (Storage representation) for objects of

that type

Attributes: (e.g., name) for objects of that type

Signature: (of operation f): f: type x type  type

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

5

L-value and R-value

Location for an object is

its L-value. Contents of

that location is its R-value.

Where did names L-value and R-value come from?

 Consider executing: A = B + C;

 1. Pick up contents of location B

 2. Add contents of location C

 3. Store result into address A.

 For each named object, its position on the right-hand-

side of the assignment operator (=) is a content-of

access, and its position on the left-hand-side of the

assignment operator is an address-of access.

• address-of then is an L-value

• contents-of then is an R-value

• Value, by itself, generally means R-value

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

6

Subtypes

A is a subtype of B if every value of A is a value of

B.

Note: In C almost everything is a subtype of integer.

Conversion between types:

 Given 2 variables A and B, when is A:=B legal?

Explicit: All conversion between different types must

be specified

Implicit: Some conversions between different types

implied by language definition

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

7

Coersion examples

Examples in Pascal:

 var A: real;

 B: integer;

A := B - Implicit, called a coersion - an automatic

conversion from one type to another

A := B is called a widening since the type of A has

more values than B.

B := A (if it were allowed) would be called a narrowing

since B has fewer values than A. Information could be

lost in this case.

In most languages widening coersions are usually

allowed;

narrowing coersions must be explicit:

 B := round(A); Go to integer nearest A

 B := trunc(A); Delete fractional part of A

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

8

Integer numeric data

Integers:

Binary representation

in 2's complement

arithmetic

For 32-bit words:

Maximum value:

 231-1

Minimum value:

 -231

 Positive values Negative values

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

9

Real numeric data

Float (real): hardware representations

Exponents usually biased

e.g., if 8 bits (256 values) +128 added to exponent

• so exponent of 128 = 128-128 = 0 is true exponent

• so exponent of 129 = 129-128 = 1 is true exponent

• so exponent of 120 = 120-128 = -8 is true exponent

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

10

IEEE floating point format

IEEE standard 754 specifies both a 32- and 64-bit

standard.

Numbers consist of three fields:

S: a one-bit sign field. 0 is positive.

E: an exponent in excess-127 notation. Values (8 bits)

range from 0 to 255, corresponding to exponents of 2

that range from -127 to 128.

M: a mantissa of 23 bits. Since the first bit of the

mantissa in a normalized number is always 1, it can

be omitted and inserted automatically by the

hardware, yielding an extra 24th bit of precision.

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

11

Decoding IEEE format

Given E, and M, the value of the representation is:

Parameters Value

E=255 and M  0 An invalid number

E=255 and M = 0 
0<E<255 2{E-127}(1.M)

E=0 and M  0 2 {-126}.M

E=0 and M=0 0

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

12

Example floating point numbers

+1= 20*1= 2{127-127}*(1).0 (binary) 0 01111111 000000...

+1.5= 20*1.5= 2{127-127}*(1).1 (binary) 0 01111111 100000...

-5= -22*1.25= 2{129-127}*(1).01 (binary)1 10000001 010000...

• This gives a range from 10-38 to 1038.

• In 64-bit format,the exponent is extended to 11 bits

giving a range from -1022 to +1023, yielding numbers in

the range 10-308 to 10308.

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

13

Other numeric data

Short integers (C) - 16 bit, 8 bit

Long integers (C) - 64 bit

Boolean or logical - 1 bit with value true or false

Byte - 8 bits

Character - Single 8-bit byte - 256 characters

• ASCII is a 7 bit 128 character code

In C, a char variable is simply 8-bit integer numeric

data

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

14

Enumerations

typedef enum thing {A, B, C, D } NewType;

• Implemented as small integers with values:

 A = 0, B = 1, C = 2, D = 3

• NewType X, Y, Z;

 X = A

Why not simply write: X=0 instead of X=A?

• Readability

• Error detection

Example:

enum { fresh, soph, junior, senior} ClassLevel;

enum { old, new } BreadStatus;

BreadStatus = fresh; An error which can be detected

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

15

Declaring decimal data

Fixed decimal in PL/I and COBOL (For financial applications)

 DECLARE X FIXED DECIMAL(p,q);

 p = number of decimal digits

 q = number of fractional digits

Example of PL/I fixed decimal:

 DECLARE X FIXED DECIMAL (5,3),

 Y FIXED DECIMAL (6,2),

 Z FIXED DECIMAL (6,1);

 X = 12.345;

 Y = 9876.54;

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

16

Using decimal data

What is Z=X+Y?:

By hand you would line up decimal points and add:

 0012.345

 9876.540

 9888.885 = FIXED DECIMAL(8,3)

p=8 since adding two 4 digit numbers can give 5 digit result

and need 3 places for fractional part.

p=8 and q=3 is known before addition

• Known during compilation - No runtime testing needed.

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

17

Implementing decimal data

Algorithm:

1. Store each number as an integer (12345, 987654)

Compiler knows scale factor (S=3 for X, S=2 for Y).

True value printed by dividing stored integer by 10S

2. To add, align decimal point. Adjust S by 1 by

multiplying by 10.

3. 10*Y+X = 9876540 + 12345 = 9888885, Compiler knows

S=3

4. S=1 for Z, so need to adjust S of addition by 2;

divide by 102 (98888)

5. Store 98888 into Z. Compiler knows S=1

Note: S never appears in memory, and there is no loss

of accuracy by storing data as integers.

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

18

Composite data

Character Strings: Primitive object made up of more

primitive character data.

Fixed length:

 char A(10) - C

 DCL B CHAR(10) - PL/I

 var C packed array [1..10] of char - Pascal

Variable length:

 DCL D CHAR(20) VARYING - PL/I - 0 to 20 characters

 E = “ABC” - SNOBOL4 - any size, dynamic

 F = `ABCDEFG\0' - C - any size, programmer defined

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

19

String implementations

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

20

String operations

In C, arrays and character strings are the same.

Implementation:

 L-value(A[I]) = L-value(A[0]) + I

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

21

Pointer data

Use of pointers to create arbitrary data structures

Each pointer can point to an object of another data

structure

In general a very error prone construct and should be

avoided

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

22

Pointer aliasing

