nnnnnnnnnnnn

Data Objects

Data objects

Scalar data objects:
* Numeric (Integers,
e Booleans

e Characters

* Enumerations
Composite objects:

e String

e Pointer
Structured objects:
* Arrays

e Records

e Lists

e Sets

Real)

Abstract data types:
*Classes
Active Objects:
*Tasks

eProcesses

PZ04A Programming Language design and Implementation -4th Edition

Copyright©Prentice Hall, 2000

Binding of data objects

A compiler creates two classes of objects:

e Memory locations

e Numeric values

A variable i1s a binding of a name to a memory location:

e Contents of the location may change

A: 10001 A: 000000000001 0001
(a) Data object: A location (h) Data value: A hit pattern (C) Bound variable: Data object
in computer memory with the used by the translator whenever hound to data value 17
name A. the number 17 is used in a
program

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Data types

Each data object has a type:
Values: for objects of that type
Operations: for objects of that type

Implementation: (Storage representation) for objects of
that type

Attributes: (e.g., name) for objects of that type
Signature: (of operation f): f: type x type — type

INTEGER VARIABLE

{int X, = MName
2 Type
Value
o
jap & Implementation

hemory address

PZ04A Programming Language design and Implementation -4th Edition 4
Copyright©Prentice Hall, 2000

| -value and R-value

R-value
Location for an object 1is ‘(
its L-value. Contents of =2
that location 1s its R-value. x“$“~L—Umue

Where did names L-value and R-value come from?
Consider executing: A = B + C;
1. Pick up contents of location B
2. Add contents of location C

3. Store result into address A.

For each named object, 1ts position on the right-hand-

side of the assignment operator (=) 1s a content-of

access, and its position on the left-hand-side of the

assignment operator 1s an address-of access.
e address-of then is an L-value
e contents-of then 1is an R-value

e Value, by itself, generally means R-value

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Subtypes

A 1s a subtype of B 1f every value of A 1s a value of
B.

Note: In C almost everything is a subtype of 1nteger.

Conversion between types:

Given 2 variables A and B, when is A:=B legal?

Explicit: All conversion between different types must
be specified

Implicit: Some conversions between different types
implied by language definition

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Coersion examples

Examples in Pascal:
var A: real;
B: integer;

A := B - Implicit, called a coersion - an automatic
conversion from one type to another

A := B 1s called a widening since the type of A has
more values than B.

B := A (1f it were allowed) would be called a narrowing
since B has fewer values than A. Information could be
lost in this case.

In most languages widening coersions are usually
allowed;

narrowlng coersions must be explicit:
B := round(A); Go to integer nearest A

B := trunc(A); Delete fractional part of A

PZ04A Programming Language design and Implementation -4th Edition 7
Copyright©Prentice Hall, 2000

Integer numeric data

Z’s complement hinary integers
Integers:
: : sign bi
Blnary representation P :
in 2's complement o1 o) 1jof1 | of1 1101 |01 |01 |0
arithmetic f ’ T o 10 1010 :
+
1 0Ot 0 101 10
For 32-bit words: 4 1 I t{
. 16
Maximum value: 54 4
231-1 a5 16
64
Minimum value: T Ee
931
Positive values Negative values
8

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Real numeric data

Float (real): hardware representations

S| Exponent hantissa
f Binary point
bl 100 21 x.100=1.00
+Z 1011000 10'11=2_3
4
=& 11000000 0011 = {%

Exponents usually biased

e.g., 1f 8 bits (256 values) +128 added to exponent
e so exponent of 128 = 128-128 = 0 1s true exponent
e so exponent of 129 = 129-128 = 1 1s true exponent

e s0 exponent of 120 = 120-128 = -8 1s true exponent

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

IEEE floating point format

IEEE standard 754 specifies both a 32- and 64-bit
standard.

Numbers consist of three fields:

S: a one-bit sign field. 0 1s positive.

E: an exponent 1in excess-127 notation. Values (8 bits)
range from 0 to 255, corresponding to exponents of 2
that range from -127 to 128.

M: a mantissa of 23 bits. Since the first bit of the
mantissa 1n a normalized number 1s always 1, 1t can
be omitted and inserted automatically by the
hardware, yielding an extra 24th bit of precision.

10

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Decoding IEEE format

Given E, and M, the value of the representation 1is:

Parameters Value

E=255 and M # O An invalid number
E=255 and M = 0 o0

0<E<255 2 (E=1271 (1 . M)

E=0 and M # 0 2 {(-126} M

E=0 and M=0 0

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Example floating point numbers

+1= 20%1= 2{127-127}% (1) ,Q (blnary) 0 01111111 00000O0...
+1.5= 29%1.5= 2{127-127 % (1) | (blnary) 0 01111111 100000...
—5= -22%1.25= 2{123-127 % (1) | (binary)l 10000001 010000...

e This gives a range from 1073® to 1038,

e In 64-bit format, the exponent is extended to 11 bits

giving a range from -1022 to +1023, yielding numbers 1in
the range 10739 to 10398,

PZ04A Programming Language design and Implementation -4th Edition 12
Copyright©Prentice Hall, 2000

Other numeric data

Short integers (C) - 16 bit, 8 bit

Long 1ntegers (C) - 64 bit

Boolean or logical - 1 bit with value true or false

Byte - 8 bits

Character - Single 8-bit byte - 256 characters
e ASCII 1s a 7 bit 128 character code

In C, a char variable is simply 8-bit integer numeric
data

PZ04A Programming Language design and Implementation -4th Edition 13
Copyright©Prentice Hall, 2000

Enumerations

typedef enum thing {A, B, C, D } NewType;
e TImplemented as small integers with values:
A=0,B=1, C=2, D=3
 NewType X, Y, Z;
X = A

Why not simply write: X=0 instead of X=A?
e Readability

e Error detection
Example:
enum { fresh, soph, junior, senior} ClassLevel;

enum { old, new } BreadStatus;

BreadStatus = fresh; An error which can be detected

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

14

Declaring decimal data

Fixed decimal in PL/I and COBOL (For financial applications)
DECLARE X FIXED DECIMAL (p,q) ;
p = number of decimal digits

q = number of fractilional digits
Example of PL/I fixed decimal:

DECLARE X FIXED DECIMAL (5, 3),
Y FIXED DECIMAL (6,2),

Z FIXED DECIMAL (6,1);

X = 12.345;

Y = 9876.54;

PZ04A Programming Language design and Implementation -4th Edition 15
Copyright©Prentice Hall, 2000

Using decimal data

What 1s Z=X+Y?:

By hand you would line up decimal points and add:
0012.345

9876.540
9888.885 = FIXED DECIMAL (8, 3)

p=8 since adding two 4 digit numbers can give 5 digit result
and need 3 places for fractional part.

p=8 and g=3 i1s known before addition

e Known during compilation - No runtime testing needed.

PZ04A Programming Language design and Implementation -4th Edition 16
Copyright©Prentice Hall, 2000

Implementing decimal data

Algorithm:
1. Store each number as an integer (12345, 987654)
Compiler knows scale factor (S=3 for X, S=2 for Y).

True value printed by dividing stored integer by 10°

2. To add, align decimal point. Adjust S by 1 by
multiplying by 10.

3. 10*Y+X = 9876540 + 12345 = 9888885, Compiler knows
S=3

4. S=1 for Z, so need to adjust S of addition by 2;
divide by 10? (98888)

5. Store 98888 into Z. Compiler knows S=1

Note: S never appears 1n memory, and there 1s no loss
of accuracy by storing data as integers.

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

17

Composite data

Character Strings: Primitive object made up of more
primitive character data.

Fixed length:

char A(10) - C
DCL B CHAR(10) - PL/I
var C packed array [1..10] of char - Pascal

Variable length:
DCL D CHAR(20) VARYING - PL/I - 0 to 20 characters
E = “ABC” - SNOBOL4 - any size, dynamic
F = "ABCDEFG\O' - C - any size, programmer defined

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

18

String implementations

Fixed declared length

RJELLJA
Ta L. |

T'Y¥Y 1

1 1 1

otrings stored 4
characters per word
padded with hlanks.

Vanable length with bound

10,14 R JE
O - B

B boaoall coaiiy brates

V|| T Y

Current and maximum
string length stored
at header of string.

Unbounded with fixed allocations

10

R

E

L

otring stored at 4

characters per block.
Length at header of

string.

T

Y

Separate descriptors

Current length

Maximum length

Descriptor points to

Unbounded with variable allocations Pointer to data string data
RIE[L[A[T|I [V]I |T|Y
otting stored as contiguous array of rlelilalT vit I Tly
characters. Terminated by null character.
PZ04A Programming Language design and Implementation -4th Edition 19

Copyright©Prentice Hall, 2000

String operations

In C, arrays and character strings are the same.
Implementation:
L-value (A[I]) = L-value(A[O0]) + I

OPERATIONS

Concatenation: A || B

I i

Substring: substring(A,m,n)

. W,
A

A
— m—|—n — —m—

n

Bit strings —— same, but at bit-level

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

Pointer data

Use of pointers to create arbitrary data structures

FEach pointer can point to an object of another data
structure

In general a very error prone construct and should be
avoilded

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

21

Pointer aliasing

Numeric assignment in C

Al 7.2 Al 0.4

B: 0.4 B: 0.4

Before After

Pointer assignment in C

7.2 A

1 4

- 0.4 B:

Before

After

Y

0.4

PZ04A Programming Language design and Implementation -4th Edition
Copyright©Prentice Hall, 2000

22

